首页 > 中国高端品牌网 > 商务 > 内容页

初中数学竞赛方案 初中数学竞赛方案设计精选4篇

2023-08-15 19:26:13 来源:互联网

为了确保事情或工作扎实开展,通常需要提前准备好一份方案,方案是阐明行动的时间,地点,目的,预期效果,预算及方法等的书面计划。我们应该怎么制定方案呢?掌知识为朋友们精心整理了4篇《初中数学竞赛方案 初中数学竞赛方案设计》,希望能为您的思路提供一些参考。

初中数学竞赛方案 篇一

一、指导思想

1.培养学生学习数学的兴趣,增强学生的数学应用能力。


【资料图】

2.增强学生学习数学的信心,并能取得更好的成绩。

3.培养数学拔尖人才,组织参加各级各类数学竞赛。

二、辅导对象

各班成立数学兴趣小组,吸纳每次数学考试成绩优秀的学生加入,整个年段成立八个数学兴趣小组,以班级为序分别命名为第一小组…第八小组,由数学科任教师担任该组指导老师。

三、辅导时间:

周四下午第四节课

四、辅导地点:

实验室

五、辅导内容:

具体安排如下:

六、辅导方法

1.教师按计划设计专题训练题,学生合作探讨完成训练题,其中存在的的问题应及时请教老师个别辅导。

2.教师根据在个别辅导中发现的普遍存在的问题,进行必要的集中辅导。

3.结合教材,精心设计活动内容,力求题材内容生活化,形式多样化,教学活动实践化,增加全面性和趣味性,扩大学生学习数学的积极性。

4.每次活动都有主题,要求与正规的课堂教学有明显的差别,不能变成变相的加课时,也不能变成补课活动,但应尽量与学生当前数学内容有一定的联系,如:可以讲本学期的课题学习融入其中。

5.数学活动要有讲究实效,要有知识性趣味性,活动内容要适合学生的年龄特点。

有关初中数学竞赛方案(推荐 篇二

数”的产生成为人类文明发展的一个重要的标志。人类从识别事物多寡的原始的数觉能力,到抽象的“数”概念的形成,经历了一个缓慢渐进的过程。

第一次扩充:分数的引进;第二次扩充:0的引进;第三次扩充:负数的引进;第四次扩充:无理数的引进;第五次扩充:复数的引进。

从原有数集扩充到新数集所遵循的原则:原数集是扩充后新数集的真子集;原数集定义的元素间的关系和运算在新数集中同样地被定义;原数集中的元素在新数集中定义的运算结果与在原数集中的运算结果一致,且基本运算律保持;在原数集中不能施行或不能完全施行的某种运算,在新数集中能够施行;新数集是满足上述四条的数集中的最小数集。扩充方法:一种是把新引进的数加到已建立的数系中而扩充。另一种是从理论上创造一个集合,即通过定义等价类来建立新数系,然后指出新数系的一个部分集合与以前数,一种新的数,也就实现了数系的一次扩张。引入了负数,就实现了这个数系关于加减运算的自封闭。

有理数有一种简单的几何解释在一条水平的直线上,确定一段线段为单位长度,把它的左、右端点分别标设为0和1。正整数在0的右边,负整数在0的左边。对于分母q的有理数,就可以用把单位区间q等分的那些分点表示。每一个有理数都可以找到数轴上的一点与之对应。

无理数的引入正方形的边长和对角线不可公度。实现了数系的又一次扩张,可以满足数学上开方运算的需要,实现了实数系关于加减运算的封闭性。戴德金阐述了有理数的有序性、稠密性和戴德金分割。戴德金分割是指,每个有理数都将全部有理数分为两类,使得第一类中每个数都小于第二类中的任一个数,这个分类的有理数可以算在两类的任何一类中。利用这个分割法可以得到无理数的定义。

所建立的数系是同构的。

自然数的两大基本理论:基数理论和序数理论

基数理论当我们把所有表示数量的符号放在一起就得到了一个集合,我们称之为“数集”,为了度量“数集”当中表示数量的符号个数,我们首先要定义一个概念就是“基数”。19世纪中叶,数学家康托以集合理论为基础提出了自然数的基数理论。等价集合的共同特征称为基数。对于有限集合来说,基数就是元素的个数。自然数就有有限集合a的基数叫做自然数。记作“”。当集合是有限集时,该集合的基数就是自然数。空集的基数就是0。而一切自然数组成的集合,我们称之为自然数集,记为n。

序数理论皮亚诺1889年建立了自然数的序数理论,进而完全确立了数系的理论。是根据一个集合里某些元素之间有“后继”这一基本关系和五条公理(皮亚诺公理),把自然数集里的元素按1、2、……这样一种基本关系而完全确定下来。

定义非空集合n中的元素叫做自然数,如果n的元素之间有一个基本关系“后继”(b后继于a,记为b=a′),并满足下列公理:

(1)0∈n;

(2)0不是n中任何元素的后继元素;

(3)对n中任何元素a,有唯一的a′∈n;

(4)对n中任何元素a,如果a≠0,那么,a必后继于n中某一元素b;

(5)(归纳公理)如果mn,而且满足条件:①0∈m;②若a∈m,则a′∈m.那么,m=n这样,所构成的系统称为皮亚诺公理系统,它就是自然数系。

自然数0是作为空集的标记。在空集中,“0”作为记数法中的空位,在位置制记数中是不可缺少的。

自然数系所蕴含的思想

对应思想(可数的集合)自然数建立在对应概念之上,而且对应的思想也成为自然数的一个重要性质。一一对应关系是集合论中建立两个集合“相等”关系的一个重要概念。(导致了俗称“理发师悖论”的罗素悖论的发现)德国策梅罗提出七条公理,建立了一种不会产生悖论的集合论,后又经过德国弗芝克尔改进形成了一个无矛盾的集合论公理系统(zf公理系统)。数位思想

位置制记数法,就是运用少量的符号,通过它们不同个数的排列,以表示不同的数。用十个记号来表示一切的数,每个记号不但有绝对的值,而且有位置的值。十进位位置制记数之产生于中国,是与算筹的使用与筹算制度的演进分不开的。

负数的数学含义至少包括如下几个方面:+a与-a表示一对相反意义的量。引入负

数学符号有两种重要属性:抽象性和形象性。数学符号的意义在于:有了数学符号,才使得抽象的数学概念有了具体的表现形式,才使得具有一般意义的推理和运算、抽象的数学思维能以直观的、简约的形式表现出来。

字母代表数代数,原意就是指“文字代表数”的学问。使得许多算术问题可以转换为代数方程问题求解。根本的内涵是“未知数的符号x可以和数一样进行四则运算。文字代表数的真正价值在于:字母能够和数字一起进行四则运算和乘方、开方,进行指数、对数、三角等运算,乃至对字母进行微分、积分运算等等。

解析式数字、字母、运算符号按照一定规律有意义地结合而成的符号组合。解析式中的字母可以有不同的含义不同的含义不影响它基本运算规律和变形规则。解析式可以区分为两大类:一类是只含有代数运算的解析式叫代数式,没有开方运算的代数式称为有理式,否则称为无理式;没有除法运算的有理式称为整式,否则称为分式;没有加、减运算的整式称为单项式,否则称为多项式。另一类是包含初等超越运算的解析式统称为初等超越式,简称超越式。它包括指数式、对数式、三角函数式、反三角函数式。

解析式的恒等变形把一个给定的解析式变换为另一个与它恒等的解析式,叫做解析式的恒等变形。恒等是相对的。式的恒等变形也是可以连写的,因为它们对一切数,代入式都相等。但是,解方程时的同解变形,不是恒等变形,。代数式数学的符号语言

代数式是在数系基础上发展起来的。在初等代数中,所涉及的运算可分为两大类:1代数运算2初等超越运算:指数是无理数的乘方、对数、三角、反三角运算。

定义,在一个解析式中,如果对字母只进行有限次代数运算,那么这个解析式就称为代数式;如果对字母进行了有限次的初等超越运算,那么这个解析式就称为初等超越式,简称超越式。还可以进一步分类:只含有加、减、乘、除、指数为整数的乘方运算的代数式称为有理式;其余的代数式称为无理式;在有理式中,只含有加、减、乘运算称为整式(或多项式),其余的有理式称为分式。

“数”发展到“式”的意义导致了运算形式化、程序化及规则的公理化,包含了计算对象扩大化,即数系的扩大化问题。将抽象的符号运算应用到更一般的对象上,开辟了构造数学的新方向,为抽象代数学的发展埋下了伏笔,成为近代数学的显著特征。

数学符号具有重要的属性一是它的抽象性。符号代表了事物本质的特征,从而具有代表性和一般性。另一个重要的属性在于它的形象性。数学符号不但精确地表示数学抽象,而且是抽象内涵的简约形象。等式和方程

(一)方程的含义“含有未知数的等式叫方程”。这个定义简单明了,为大家所习用。不过,这个定义有不足。“方程是为了寻求未知数,在未知数和已知数之间建立起来的等式关系。”把方程的核心价值提出来了,即为了寻求未知数。

判断一个代数式等式是否是方程就是看等式中的字母是否是待求的未知数。方程的概念一般用于两个领域:“求某个未知数的数”和“曲线与方程”在这两个领域中“方程”的概念本身并没有变化,而是研究的问题有所不同。前者的目的在于求方程的解,而后者则希望研究的是这些解的分布情况。方程解的个数(或解集的大小)与方程的存在域的大小有直接关系。

方程的分类依照方程解的个数分,可将方程分为无解方程(矛盾方程)、有唯一解、有多个解、有无穷多个解和全体实数解等。方程按照它所含有的未知数的个数来分类:集。两个不等式的解集相同,则称这两个不等式是同解的。

不等式有三个基本性质:1不等式两边同时加或减去同一个整式,不等号方向不变,2不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变3不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变。不等式的实际应用在运动变化过程中,如果用函数模型刻画运动变化的两个变量x、y之间的关系,那么。方程模型刻画的是x、y变化过程中某一瞬间的情况,而不等式模型刻画的是变化过程中x、y之间的大小关系,是更普遍存在的状态。不等式尤其在解决“最值”问题上具有广泛的应用。不等式蕴含的思想

(一)模型思想与相等现象相比,不等现象是现实世界中更为普遍的现象,不等式是一元方程、二元方程、多元方程等。

方程借助用字母表示数的代数思想,将未知数同已知数一起描述问题的代数表达形式,形成了方程的基本思想。

方程思想具有很丰富的含义,其核心体现在:一是模型思想,二是化归思想。学习方程内容最主要的事情集中在两个方面。一方面是建模,另一方面是会解方程。关于方程建模大自然的许多客观规律都表现为量与量之间的某种关系,将它表示出来往往就是一个方程式。初中方程的教学不能过分地停留在数学层面上必须使学生真正体会到数学与现实生活密不可分的联系。体会方程是一种用数学符号提炼现实生活中的特定关系的过程。必须学会抽象将关系抽象为数学符号。

方程设计思想的思路先进行生活中的提炼,然后到数学表达,到形式化的方程,再到最终解决方程问题。

初中数学方程的常见解法:换元法、因式分解法、图像法、求根公式法。

等式与方程的关系建立方程是借助等式作为其上位概念来完成的。方程是一种特殊的等式,是在说明相等是怎么回事,等式可以是数字之间的相等,可以是恒等,而方程刻画的可以是两件事情之间的相等,可以是有条件的相等,也可以使一种随机的相等。不等式

学习的意义不等式可以表示一种界限,本身就是一种规律。其次,研究不等式可以导致等式。最后,不等式在几何上可以表示一个区域。

不等关系与相等关系既是矛盾独立的,也是相互统一的。不等关系往往可以等价地转化为相等关系加以解决。

不等式的含义两个实数或代数式用符号连接起来的所得到的式子叫做不等式。如果不论用什么实数代替不等式中的字母,它都能够成立,这样的不等式叫绝对不等式,如果只用某些范围内的实数代替不等式中的字母,它才能够成立,这样的不等式叫条件不等式。如果不论用什么样的实数值代替不等式中的字母,不等式都不能成立,这样的不等式叫矛盾不等式。当不等号两边的解析式都是代数式时,称为代数不等式;两边的解析式至少有一个是超越式时,称为超越不等式。不等式解集表示方法

不等式所有解的集合,叫做解集。求不等式解集的过程叫解不等式。不等式组中每一个不等式解集的交集叫做不等式组的解集。

一个不等式的解集表示方法1数轴表示法即在数轴上把不等式的解集表示出来。2集合表示法即用集合来表示不等式的解集。3区间表示法即用区间来表示不等式的解

刻画不等现象的有力模型。通过分析实际问题中的数量关系,列出不等式,通过解不等式得到实际问题的答案,这就体现了不等式的模型思想。同时,这种模型经常与函数、方程联系在一起,三者都是刻画现实世界中量与量之间变化规律的重要模型,在解决实际问题时,要合理选择这三种重要的数学模型。(二)辩证思想通过c=a-b的媒介作用,不等式ab与等式a=b+c建立了一种“等价”关系。这是一种辩证关系。恰当地运用这种思想可以轻松地化解相当多的问题。(三)数形结合思想根据题意可列出不等式组,运用数轴表示不等式组的解集,可以直观形象地解决问题。这种思想正是数形结合思想。函数

函数是描述客观世界变化规律的重要数学模型。

1755年,欧拉首次给出了函数变量定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后面的变量变化时,前者的这些量也随之变化,则将前面的变量称之为后一些变量的函数。”由此演变为目前的函数的“变量说”黎曼在1851定义:“我们假定z是一个变量,如果对它的每一个值,都有未知量w的每一个值与之对应,则称w是z的函数。”。1939年,布尔巴基学派主借用了笛卡儿积建立关系,进而定义函数:

1)对

中每一个元素

,存在

,使

(2)若且,则。函数记作:”分别称以上函数定义为变量说、对应说和关系说。函数概念的核心思想

数学的核心是研究关系,即数量关系、图形关系和随机关系。函数研究的是两个变量之间的数量关系:一个变量的取值发生了变化,另一个变量的取值也发生变化,这就是函数表达的数量之间的对应关系。其中有三点是重要的,一是变量的取值是实数;二是因变量的取值是唯一的;三是必须借助数字以外的符号表示函数。函数的表达方式一般有三种:解析式法,表格法,图像法。

解析式是最常用的方法,适用于表示连续函数或者分段函数。解析式有利于研究函数性质,构建数学模型,但对初学者来说也是抽象的。列表法适用于表达变量取值是离散的情况。利用图像法可以直观地表述函数的形态,有利于分析函数的性质,但作图是比较困难的,用何种方法表达函数可因题而议。中学数学研究的函数性质

数学中研究函数主要是研究函数的变化特征。中学阶段主要研究函数的周期性,也涉及

奇偶性;在高中阶段主要研究函数的单调性、周期性,也讨论某些函数的奇偶性。(一)函数的周期性周期性反映了函数变化周而复始的规律。是中学阶段学习函数的一个基本的性质。周期函数是刻画周期变化的基本函数模型,使我们集中研究函数在一个周期里的变化,了解函数在整个定义域内的变化情况。

(二)函数的奇偶性函数的奇偶性也是我们在中学阶段学习函数时要研究的函数的性质,但它不是最基本的性质。奇偶性反应了函数图形的对称性质,可以帮助我们用对称思想来研究函数的变化规律。

(三)函数的单调性单调性是讨论函数“变化”的一个最基本的性质。从几何的角度看,就是研究函数图像走势的变化规律。函数与其它内容的联系

(一)函数与方程用函数的观点看待方程可以把方程的根看成函数与x轴交点的横坐.解析几何的产生与发展

笛卡尔提出了平面坐标系的概念,实现了点与数对的对应,将圆锥曲线用含有两面三刀个求知数的方程来表示,并且形成了一系列全新的理论与方法,解析几何就这样产生了。现代几何的产生与发展

人们不断发现《几何原本》在逻辑上不够严密之处,在尝试用其他公理、公设证明第五公设“的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。初中数学课程中的几何学内容

(一)直观几何几何学是其中研究“形”的分支。几何图形可以直观地表示出来,人们认识图形的初级阶段,主要依靠形象思维。“形象思维”也就是强调几何直观。

(二)演绎几何几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,因此,研究图形的形状、大小和位置关系时,不能仅仅依靠直观实验的方法,标,即零点的横坐标。方程可看作函数的局部性质,求方程的根就变成了求函数图形与x轴的交点问题。

(二)函数与数列数列是特殊的函数。它的定义域一般是指非负的正整数集,有时也可以为自然数集,或者自然数集的子集。数列通常称为离散函数。等差数列是线性函数的离散化,而等比数列是指数函数的离散化。

(三)函数与不等式我们首先确定函数图像与x轴的交点(方程f(x)=0的解),再根据函数的图像来求解不等式。

(四)函数与线性规划是最优化问题的一部分,从函数的观点看,首先,要确定目标函数,用目标函数来刻画“好、坏”或“大、小”等,接着,需要确定目标函数的可行域。最后,讨论目标函数在可行域(由约束条件确定的定义域)内的最值问题。

解线性规划问题,可归结为以下算法:第一步,确定目标函数;第二步,确定目标函数的可行域;第三步,确定目标函数在可行域内的最值。函数模型

函数是对现实世界数量关系的抽象,是建立思想模型的基础,具有良好的普适性和代表意义。现实生活中,普遍存在着最优化问题----最佳投资、最小成本等,常常归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数建模的思想进行解决。在运用一次函数知识和方法建模解决时,有时要涉及到多种方案,通过比较,从中挑选出最佳的方案。

在实际的教学中,除了使学生了解所学习的函数在现实生活中有丰富的“原型”之外,还应通过实例介绍或让学生通过运算来体验函数模型的多样性。

通过实例,让学生体会、感受数据拟合在预测、规划等方面的重要作用,使学生们学会用数学的知识、思想方法、数学模型解决实际问题,提高运用数学的能力.要鼓励学生收集一些社会生活中普遍使用的函数模型的实例进行探索实践.第二章图形与几何四个基本阶段。

实验几何的形成和发展

人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何。理论几何的形成和发展

柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,欧几里德按照严密的逻辑系统编写的《几何原本》奠定了理论几何的基础。而需要具有一般性和抽象性的方法,其中包括逻辑推理。

以一些原始概念和公理为出发点,逐步对一些几何概念做比较逻辑化的描述,进行一些基本推理和论证。虽然也借助直观和少量代数公理,但是,主要立足逻辑进行几何概念及其性质的分析研究,这就是演绎几何。

(三)度量几何对一些图形进行度量,包括长度,面积,体积,角度等,适当的延伸。(四)变换几何也叫运动几何。这个领域主要讨论平移、旋转、反射等刚体运动,以及相似变换、拓扑变换,并借以研究图形的全等、对称等概念,了解变换之下的不变量。(五)坐标几何即解析几何。在解析几何中,首先是建立坐标系。坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。

经验几何所谓经验几何,通常是直观几何、实验几何的通称,它特别关注学生几何活动经验的积累,以及几何直觉的发展。经验几何的作用

几何学是研究现实世界物体的形状、大小和位置关系的学科,而后发展成为研究一般空间结构、图形关系的学科。

(一)经验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重大的作用,而论证几何在培养人的逻辑思维能力方面起着重要作用。(二)经验几何是学习推理论证几何的必要前提。

学习的内容是由非形式化的推理逐渐提升到形式化的推理,透过直观几何与实验几何的充分学习,对几何对象的熟悉及非形式化的推理,达到知觉性的了解、操作性的了解,进而形成几何推理。

另一方面,我们用来作为推理基础的几何性质,一部分是利用实验归纳的方法得来的,另一部分则是利用已知的几何性质进行“推论”而导出的结果。

(三)实验几何是几何学习的一个阶段和一种认知水平,更是一种几何学习方法。总之,实验几何作为几何学习的一个阶段,在学生几何学习过程中起到承上启下的衔接作用;同时,实验几何是贯穿从直观几何到论证几何学习的一种有益于发现真理、几何直观几何直观具有发现功能,同时也是理解数学的有效渠道。数学概念经过多级抽象充分形式化后,有必要以相对直观可信的数学对象为基础进行理性重建,从而达到思维直观化的理想目标和可应用性要求,这要求数学的直观与形式的统一,才使得数学的完美。

几何直观及其作用《数学课程标准》(修订稿)指出,几何直观主要是指利用图形描述

和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观对于学生的数学发展非常重要:

首先,几何直观是一种创造性思维,是一种很重要的科学研究方式,在科学发现过程中起到不可磨灭的作用。对于数学中的很多问题,灵感往往来自于几何直观。数学家总是力求把他们研究的问题尽量变成可借用的几何直观问题,使他们成为数学发现的向导,随着现代科技的发展,几何直观在计算机图形学、图象处理、图象控制等领域都有诱人的前景。

其次,几何直观是认识论问题,是认识的基础,有助于学生对数学的理解。

借助于几何直观、几何解释,能启迪思路,可以帮助我们理解和接受抽象的内容和方法,抽象观念、形式化语言的直观背景和几何形象,都为学生创造了一个自己主动思考一般地,周长指封闭曲线一周的长度。(二)面积

物体的表面是一个二维的图形,直观地感觉它所占有的区域具有一定的大小,对一个二维图形的表面进行度量以后,用一个“数”标志它的大小,称这个数为该图形的面积。人们约定,将边长为1米的正方形的面积规定为1平方米。

于是,对于边长为整数a米、b米的矩形,总可以将其剖分为若干个边长为1米的正方形,进而,这个矩形就由ab个单位正方形组成,从而,这个矩形的面积为ab平方米(整数)。如果矩形的边长a,b是无理数,而且仍用边长为1的正方形去度量,那么,还要使用极限过程,用一列有理数逼近无理数,an→a,bn→b。依据anbn→ab,以及有理数边长的矩形面积公式,最后得出,矩形的面积也是ab。

这个过程实际上论证了“边长相等的两个矩形的面积的比,等于它们不相等边的长度的的机会,揭示经验的`策略,创设不同的数学情景,使学生从洞察和想象的内部源泉入手,通过自主探索、发现和再创造,经历反思性循环,体验和感受数学发现的过程;使学生从非形式化的、算法的、直觉相互作用与矛盾中形成数学观。

最后,几何直观是揭示现代数学本质的有力工具,有助于形成科学正确的世界观和方法论。借助几何直观,揭示研究对象的性质和关系,使思维很容易转向更高级更抽象的空间形式,使学生体验数学创造性工作历程,能够开发学生的创造激情,形成良好的思维品质。

直观几何主要包含哪些内容

以大量丰富的实例为背景,通过观察、操作来探索认识基本图形的性质。这些基本图形主要包括点、线、面、角、平行线、相交线、三角形四边形、圆等,除此之外,还包括尺规作图、视图和投影等。这些内容构成直观几何的重要组成部分。经验几何的具体研究内容

初中几何的主要课程教学目标在于,“积累几何活动经验,发展几何直观、空间观念,进一步感受几何推理的魅力,体会几何的美,初步掌握几何推理的基本形式”,而发展几何直观、积累几何活动经验、培养空间观念,则是经验几何的核心目标。按照初中阶段的经验几何认识过程的不同,通常可以将经验几何的学习内容,分成认识图形、进行立体图形与平面图形的转换、在运动与变换中研究几何图形的有关性质三部分。度量几何几何学起源于图形大小的度量。根据图形的维数,把度量一维图形大小的数称为长度,而将二维图形的大小用面积来表示,体积则是标志三维图形大小的数。线段长度是一切度量的出发点。

长度的含义线段“两端之间的距离”。所谓距离。罗兰德(rowland)首先使用光栅测量一公尺长度中的波长数。1960年以后,用激光定义“米”。

目前,国际上采用的长度单位,是在1983年10月确定的,即第十七届国际权度大会重新把国际标准制(si)中的长度单位──“米(meter)”定义为:光于299,792,458分之1秒内在真空中所走的长度,称为“米”。

如果可以用一个线段e衡量两条线段m,n,使得m,n都是e的整数倍,我们称两个线段m,n是可公度的。

辗转相除方法,用后次的an截取前次的an-1,即较长的那个线段减去短的那个线段,如此辗转截取,直到两个线段一样长,这个长度就是公度量。古希腊的毕达哥拉斯学派,发现正方形的边与其对角线不可公度3.周长“圆、椭圆或其它闭合的曲线的周界长度。”

比”。

海伦-秦九韶公式

刘徽用割圆法求圆面积大胆地将极限思想和无穷小分割引入了数学证明。将圆内接正多边形的边数不断加倍,则它们与圆面积的差越来越小,其极限值就是所要求的圆面积。印度圆取两个相等的圆,把它们等分成相同的若干个全等扇形,然后把它们沿半径剖开(但扇形的圆弧仍然连着)、展平成锯齿条形然后,把两个锯齿形互相嵌入即成一个近似的矩形。份数分得愈多,其结果愈接近矩形,这个矩形的高为圆半径r,底为圆周长c,面积为rc,从而得圆面积为。体积是指物质或物体所占空间的大小。

(1)直接度量法。把一种叫做“单位正方体”的空间图形尽可能地堆放在要度量的几何体内,如果被度量的几何体恰好被a个正方体填满,那么这个几何体的体积就等于几个单位体积。(2)间接度量法。量出被度量的几何体中某些线段的长度,再利用有关公式计算出这个几何体的体积。“

初中数学竞赛方案 篇三

一、活动目的

通过活动,拓宽学生的知识面,开发智力,挖掘潜能,发展个性和特长,让一些资质聪慧学有余力的学生得到更好的煅炼。同时营造良好的学习氛围,鼓励学生积极参与、大胆创新、增强竞争意识,提高知识应用能力,体验知识所带来的乐趣。

二、活动安排

1.负责人:xx。

2.时间:20xx年3月13日中午12:30—13:30。

3.考试地点:旧梯教。

4.参赛对象:七年级每班选拔5名学生参加竞赛。

三、命题要求

命题力求多样新颖,兼具知识性和趣味性,体现本学科知识的综合应用,能提高学生的思考和分析问题、解决问题的能力,时间60分钟,分数100分。

四、奖励办法

设立一等奖3名,二等奖7名,三等奖10名进行表彰、奖励。

五、注意事项

1.参赛学生应准时到位,凡在规定时间内未出现者视为主动弃权;

2.组织人员要做好学生安全防范工作,确保活动有序、顺利进行;

3.活动结束后,应组织学生清扫考场,关好门窗。

有关初中数学竞赛方案(推荐 篇四

1.亲和性特点与传统的灌输式、讲授式等初中教学方法相比,师生互动教学有明显的亲和性特点。

由于教师与学生之间的互动,很大程度地拉近了师生间距离,使学生感受到教师的耐心与亲和,从而加深对教师的信任,更喜欢学习数学。

2.开放性特点传统教学,对于学生的心理、情绪都没有充分地顾及到,这就导致有的学生对初中数学学习存在抵触情绪。

而师生互动教学与传统教学不同,是一种开放性的教学方法。通过师生互动与教师对学生的鼓励,使学生从封闭的情绪中解放出来,激发学生高涨的情绪,使学生能够在教师的引导下围绕教学内容与教学目标展开讨论与合作。

1.以小组活动形式进行互动

在初中数学教学中,为规范师生互动局面,促进互动效果,教师最好采用创建学习小组的方式。教师可按照一定的标准将全班学生分成若干个学习小组,然后布置数学学习任务。学生在接到任务研究、讨论的同时,教师可以以小组成员的身份加入到学习小组中,与学生就某个数学知识点共同进行讨论、交流与探索。教师通过这种与学生零距离接触的方式,点燃学生的热情,使学生能够主动地向教师阐述自己的观点,最终在教师的指导下理解数学知识。

2.通过设问,促进师生互动有了问题,才会引发学生思考。

在初中数学师生互动教学中,有效的设问必不可少。教师应该根据教数内容与难点,提出一些关键、合适、具有吸引力、趣味性的问题,然后让学生思考。这些有趣的数学问题,能够激发学生的学习兴趣,使他们充分发散思维,带着问题去阅读数学教材,然后通过互相探讨、与教师互动等多种方式,就问题展开分析,最终在教师的指导下获得问题的解决方法。

3.巧设陷阱,引导学生在探究中互动

在传统的初中数学教学中,多是学生在学习中出现各种各样的错误,教师找出错误进行批评教育,使学生能够改正错误,但这种纠错式的教学方法容易打击学生的自信心,使其逐渐抵触数学。在新课改师生互动教学过程中,教师故意暴露一些破绽或错误,然后逐步引导学生去探究、发现错误,进而主动与教师交流、互动,最终加深学生对数学问题的理解,使学生真正地学好数学。

4.互动中多元化评价体系的应用在师生互动

教学中评价体系的应用很有必要,教师需根据初中数学教学内容,结合初中学生的认知、年龄、心理特点,建立起多元化的评价体系。首先,在数学教学中,教师应该根据学生互动的积极性、学习起点的高低,对学生进行灵活的评价。注意评价时,多表扬学生,以激发学生的积极性,在提出学生的缺点时也应该尽量婉转、委婉一些,以避免伤害学生的自尊。其次,鼓励学生之间互相评价,可将学生组成小组,以小组合作的方式与教师互动,让学生互相之间进行评价,提出对方的不足之处,教师再合理引导,进一步提高互动教学的效果。再次,教师可以鼓励学生对自己的教学成果进行评价,并乐于接受学生提出的意见。通过这种互动形式的评价,让师生双方都能认识到自己的不足,并加以改进,进而为提高初中数学教学效率打好基础。

总之,在初中数学教学中重视师生互动教学模式,不仅能活跃课堂气氛,还能激发学生的积极性与主动性,提高学生对数学的求知欲望,同时能融洽师生关系,进一步为教好数学、学好数学奠定坚实基础。

上面内容就是掌知识为您整理出来的4篇《初中数学竞赛方案 初中数学竞赛方案设计》,希望对您的写作有所帮助,更多范文样本、模板格式尽在掌知识。

关键词:
x 广告
x 广告